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ABSTRACT. We have designed and implemented a set of highly efficient and highly scalable algorithms for
an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed
performance analysis of systematic runs onupto512node Intel Paragon. The equation solver achieves a sus-
tained 18 Gflops performance. As the results, we achieved an unprec~dented  100 -fold solution time reduc-
tion on the Intel Paragon parallel platform over Cray C90. This not only meets and exceeds the DAO time
requirements, but also significantly enlarge the window of exploration in climate data assimilations.

1.0 Overview

An important aspect in short-term numerical weather prediction and long-term climate modeling is incorpo-
rating the observational data into the simulation systems, Since observational data come with various uncer-
tainties and errors, the data are incorporated in a statistical sense, i.e., they are filtered through a Kalman
filter. Because the observational points are irregularly distributed on the surface of the earth (both latitude,
longitude and elevation), and they change from time to time, the filtered observations must to be intel~olated
to regular grids on which model systems are based.

The Physical-space Statistical Analysis System (PSAS) developed at the Data Assimilation Office (DAO) at
Goddard Space Flight Center[ 1] is an advanced system which provides a general framework to perform the
above data assimilation tasks. This software system will play a central role in Mission to Planet Earth enter-
prise and is designated to replace the existing operational system at the DAO by 1998. Currently, a brute-
force application of PSAS for a complete analysis requires about 4-7hrs on Cray C90. This falls far short of
the DAO requirement of 120 re-analyses per day in real time.

Recently, we have implemented all major parts of the PSAS package on the Intel Paragon. We designed and
incorporated several new algorithms which are highly efficient and scale well to very large numbers (thou-
sand) of processors. For example, a time-critical part of the package is the sparse linear equation solver,
which achieves a sustained speed of 18.3 GFLOPS on a 5 12-node Paragon (see Sec.5). This represents 36%
of the theoretical total peak speed of the 512-node Paragon.

As a result, the parallel PSAS package solves an 80,000 observation problem in just 176 sees (wall clock
time, including about 30 sees spent on reading/writing data from/to disk) on the 512-node Paragon. In con-
trast, the same problem takes an estimated 4-5hr CPU time on the Cray C90 (the first half took 9120 sees on
C90 vs. 76 sees on Paragon, and the second half is estimated to take about the same time on C90). This repre-
sents an unprecedented 100-fold reduction in solution time. This parallel PSAS not only meets and substan-
tially exceeds the time requirements; in fact it will change the DAO operations significantly: many
previously unexplored problems due to hugh computational requirements now can be solved in a timely
manner.
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,, 2.0 Basic formulation

Inmost computer models, theweather system onthesurfa&  of the Ewthisrepresented  byaregulm  20x2.50
grids, using the familiar latitudes and longitudes. The entire atmosphere is covered. The grids along the verti-
cal dimension is marked by pressure levels, usually 1000mbar  to 20 mbar (elevation is converted to pressure
using thermostatic equations). These grids remains fixed during the simulation time period (1 month, 10 year,

etc.). The number of model variables Na (all components at all pressure levels) is around 106, and will
increase as we increase pressure levels and/or refine horizontal grids.

The observation data, many of them from satellite observations, are not uniformly distributed on earth; some
parts of the world have few observation data. Further complicating the situation is that both the number of
observation data and their location change from time to time, making it impossible for systematic compar-
ison over time. At present, the number of observations No is around 100,000, and will grow with time. The
PSAS algorithm transforms these observations from diverse sources at arbitrary space locations to physi-
cally-consistent data set on the above mentioned regular model grids, therefore propagating information
from observed regions to unobserved regions,

Given a model forecast wf (how the forecast is calculated and evolved in time are independent of the

data assimilation process), and the actual observations W. which comes with uncertainties as reflected

in the error covariance matrix R , the statistical process is to obtain an optimal estimate Wa of the
state of the weather system through a Kalrnan filter,

where 1{ is a interpolation operator interpolating forecast from grid locations to observation locations, and

K = PfH7 (HPfH7 + R)”’ is the Kalman  gain matrix, Here ]’ contains physical correlations calculated using a

large number of existing routines. Clearly, calculating the Kalman gain matrix ~ by inverting a Na x Na

matrix is a very hard problem. Instead, the PSAS algorithm solves the following equation for the vector .x

(]~f’f/iT + R)x = W. - }]Wf

and then fold back the solution from observation locations to the grids location to obtain the final optimal
analysis state

In other words, the net effect of incorporating the observation data through the Kalman filter is the increment

A }~~
fT= /“ // x to the forecast. In the next two sections, these two parts of PSAS are discussed in tail.

Since both parts relate to observations which are irregular in space and change in different runs, the PSAS
problem is an unstructured problem whose parallel implementation are generally more complicated than reg-
ular problems. Also, the physics, i.e., the large number of correlations between different components, such

2



. .

,“ as winds, water vapor mixing ratios, are rather complex (about 7500 lines Fortran codes spread in 40 sub-
routines).

We take a disciplined modular approach (maybe object-oriented approach is better?) in which all high level
data organizations are done using structures in C while leaving lower level of physics details in Fortran;
interfaces to low level are rewritten to restrict accesses through only the matrix block assemble and one or
two C structures. All new codes, including the preconditioned CG which is essentially a skeleton code calling
underlying Fortran routines for numerical calculations, are written in C, and use the highly efficient BLAS
routine whenever possible. This approach makes modification of physical problem much easier and at same-
time maintains the efficiency of Fortran for numerical computations.

3.0 Solving the Correlation Equation

The critical part of the PSAS is the solution of a large linear system of equations, the correlation equation,

Mx=b , with 105 unknowns. The challenges of the problem lie in the size of the matrix involved, The syn~-

metric correlation matrix M = H#H~+R  has a size of 105
X105 with 26% nonzero, due to the cutoff approxi-

mation of the correlations at 6000km on the surface. To store the entire matrix would require 10 GB ( in
single precision, or 20 GB in double precision) computer memory, exceeding the capacities of any existing
sequential computer. This difficulty is resolved in the Cray C90 codes by re-computing the matrix on the fly,
at considerable expense of CPU time.

Fig. Regions of observations, Fig.2 Block structure of the correlation
m~trix. Only nonzero blocks are shown.

The memory-bound problem fits well to distributed-memory parallel architecture, which could have much
large total residence memory, The “sparse” correlation matrix, however, does not fit to conventional sparse
matrix techniques (for matrices of nonzeros typically far lower than 26Yo, maybe around 2% or less). This
difficulty is resolved by imposing a structure to the spru se matrix: observations are divided into regions with
equal numbers using a concurrent partitioned we have previously developed[2], and the correlation cutoff is
enforced at region level (see Figure 1). This approximation introduces a small error (our rigorous comparison
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indicates a 1 -2Y0 rms error in solution), but increase the calculation speed dramatically. The imposed struc-
ture is a block structure with 74% of matrix blocks are identically zero (see Figure 2). Now the matrix-vector
multiplication is carried out at BLAS 2 level speed, instead of the scalar speed due to the indirect indexing in
conventional sparse matrix techniques. As the result, our solver runs at 77 MFLOPS  on l-node Paragon, in
contrast to about 10MFLOPS oft ypical scalar speed.

After the observations are concurrently partitioned into regions and properly distributed among the proces-
sors in a balanced way, we come to the distribution of the huge sparse matrix. A large number of nonzero
matrix blocks of this irregular problem must be distributed among the processors in a load-balanced way
(e.g., there are 34907 matrix blocks in the 512-node case). This is an optimization (linear programming)
problem on 34907 variables with various constraints. We designed a fast iterative algorithm which finds a
near-optimal distribution in just a few seconds.

Once the correlation matrix blocks are generated according to the distribution, the correlation equation is
solved by a conjugate-gradient iterative solver, of which the key part is the global matrix-vector multiplica-
tion[3]. Given the imposed matrix block structure, the multiplication proceeds similar to the parallel block
approach for dense matrix-vector multiplication. IIowever, there are two important differences, First, we onl y
store the upper-right matrix blocks due to symmetry; this allows each non-diagonal matrix block to be used
twice in each matrix-vector multiplication, and therefore increases conlputation/communication  ratio. Sec-
ond, the communication here is irregular due to the absence of 74% of matrix blocks (which would exist in
dense matrix case); and storing only upper-right half matrix adds more irregularity to the communication pat-
tern. When everything is properly implemented, this new algorithm for the “not-so-sparse.” sparse n~atiix-
vector multiplication is highly efficient and scales well to large number of processors, as indicated by the per-
formance numbers shown above.

The observations partitioned, the matrix blocks dist! ibutor  and the PCG solver parts have been integrated
and fully debugged with a system of monitoring and debugging, in which by changing a few runtirne param-
eters such as debug-flag, print-proc, print-flag, etc., details of a portion of the codes on a given processor, or a
statistical summery of some important things over a portion or all processors will be automatically printed
out to screen for monitoring or debugging purposes.

4.0 Folding back

Folding back solution to all pressure levels, i.e., calculating Aw = P~H7’x  , represents a very significant
f T At the 2°x2.50 horizontal resolu-computational task, mainly in assembling the Na x No matrix P H .

tion, there is 13104 grids at each pressure level. The smallest model system contains 14 pressure levels for
four upper-air components and 3 sea-level components; they add up to Nfl = (3+4x14)  x13104 = 773,136

model variables. The operational system will have 1&22 pressure levels, which bring IVa to 106 or more.

As mentioned before, the number of observations No is around 105 or more for operationals ystern. The

matrix PfHT has similar sparsity  pattern as the correlation equation matrix, except it is not symmeti ic any

more. The folding-back process is dominated by assembling the huge matrix PfHT . It is fortunate that the
matrix-vector multiplication is carried out only once, so that the entire matrix does not need to be stored at
same time; they are computed as needed on the fly.
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The parallel implementation takes the advantage that the observations have been grouped into regions and
distributed among the processors in a balanced way during the partitioning process. The model variables are
partitioned among the processors in the beginning of the fold-back process. Once again, they are grouped
into regions to efficiently implement the correlation cutoff at 6000km, which determines the sparsity of the
folding matrix.

The partition of forecast model variables are based on 128 grid regions, which is different from those obser-

vation regions in shape, size and location. The 13104 grids on the 2°x2.50 mesh are grouped in 128 static

rectangle regions based latitudes and longitudes. For example, the zone covering the equator within *90 lat-

itudes are divided into 18 regions. For 18° zones closer to north/south poles, they are divided to less regions

to keep them roughly same area. The north pole centers around a single circular region within 9° from the
pole. Similarly for the south pole. Etc. Grid points on higher elevation levels are grouped similarly, such that
a single grid region looks like a column sticking out from sea-level and reaching up to upper atmosphere.

Note that the number of grids in each region differs substantially, even though all regions have similar sur-

face area, because, for example, two points 2.5° longitudes apart are very close to each other when they are
near the north/south poles. For this reason, grids along longitudinal direction are decimated when they are

above 45°. As zones locate closer to poles, the rate of decimation increases, so that un-decimated  grids in
each regions become roughly same. The total number of grids is decimated to 8792. The matrix-vector mul-
tiplication will only use these un-decimated  grids, and values at the decimated grids are simply interpolated
from neighboring undecimated  grids. This reduces the total computational efforts by 1- 8792/13104=31 Yo.
The implementation keeps no grids decimation as a option so that one can check the consistency of the final
solution.

How to distribute the grid regions on the processors? Since observations are already distributed, we distrib-

ute grid regions according to the sparsity  pattern of the PfH1’ matrix. On each processor, we loop through
all 128 grid regions; if a grid region correlates to (i.e., being within 6000km distance from) at least one of
the observation regions on the processor, this grid region maintains a copy on this processor. Since a given
grid region correlates to many observation regions on many different processors, this grid region maintains
many copies on different processors. In fact, on average, a grid region maintains copies on 1/3 of all the pro-
cessors.

The matrix-vector multiplication proceeds on each processor by going through all correlated pairs between
grid-regions and observation-regions. For each such pair, the matrix block is first calculated. For upper-air
component, the matrix blocks between the observation region and the grid region at all pressure levels are
calculated at once. (In this way, we can make use of the specific form of correlations to reduces the amount of
required computation significantly at a later stage. ) Then the matrix block and subvectol  multiplication is
done and the result is appropriately accumulated using a single BLAS routine. These calculations are car-
ried out independently and simultaneously on all processors.

Next we sum up appropriate increment sub-vectors on different processors to form the final results[3]. Since
the grids regions on each processor differ, the order of increment sub-vectors are different too. So we reshuf-
fle the sub-vectors on each processor into a universal vector which has identical order on all processors, of
which the components not present on a processor are set to zero. Afterwards, a global sum over the universal
vector on all processors are performed. This final results is written to a binary file on the disk. In the case
where the grids been decimated, the length  of the increment vector for each component at each level is
restored to the original 13104, with decimated grids values being simple interpolations between nearest un-
decimated grids along longitudinal direction.
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5.0 Performance
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Both parts of the parallel PSAS package is completed, and their accuracies are verified on smaller problems
where the sequential results can be readily obtained. We carried out test runs on various problems on lntel
Paragon with increasing problem sizes on increasing number of processors. Table 1 summarizes the CPU
time for an 80,000  observation problem to all 14 pressure levels. The first half of the parallel package
includes reading data from disk to all 512 processors, partitioning observations into 512 regions, generating
load-balanced distribution lists for the correlation matrix, assembling the matrix blocks, and solving the cor-
relation equation using a preconditioned CG solver. The second half includes generating grid regions, distrib-
uting/replicating folding matrix (first generating lists and then assemble the matrix blocks), carrying out the
local matrix-vector multiplication, global summing of all increment vectors, restoring vector length/order and
interpolating to obtain values on decimated grids. Note that 80,000 observation problem is practically the
largest problem we can run on a C90. The real time, the wall-clock time, is much longer than the CPU time

TAII1 J? 1. CPU time in seconds for a 79938 observations problem with 14 levels. * indicates estimates.

Paragon
Cray C90 S12-node

1st half 9120 75
2nd half 9~* 101

total 18000” 176

listed in the Table. Our parallel package reduces this 5hr C90 run to a 3min run. This 1~+ -fold reduction in
solution time is unprecedented in the area of high performance computing.

We also analyzed the performance of various parts of the package, The time-critical part of the package is
the sparse linear equation solver, which achieves a sustained speed of 18.3 GFLOPS on a 512-node Paragon
for an 85000 observation problem (see Figure 3.). This represents 36% of the theoretical total peak speed
(512 * 100MFLOPS/node)  of the 512-node Paragon. The solver achieves 77% peak speed on one node, 54%
on 64 nodes, etc. These numbers indicate the high efficiency the package has achieved. The solver spends
27.5% of the time on communications for this problem on 5 12-node. Most of the communication time is
spent on sending or receiving (average) 536 messages per processor with (average) 166 floating point num-
bers. These percentage numbers on peak total speed and on communication indicate the highly scalable”
nature of the underlying algorithms.
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Fig.3 Performance of the equation solver.
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6.0 Conclusions

We have designed and implemented a set of highly efficient and highly scalable algorithms for the I?SAS
data assimilation package, and achieved a 100+ -fold solution time reduction on the Intel Paragon pa~allel
platform over Cray C90. This not only meets and exceeds the DAO time requirements, but also significantly
enlarge the window of exploration in climate data assimilations.
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